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Abstract

Evolutionary Structural Optimization(ESO) method is well known as one of several topology optimization methods
and has been applied to a lot of optimization problems. While ESO method evolves the given model into an optimum
by subtracting several elements, in AESO method elements are added in a previous step ofthe evolutionary procedure.
And in BESO(Bidirectional E50) method. some elements are either generated or eliminated from a previous model of
evolutionary procedure. In this paper, Ranked Bidirectional Evolutionary Structural Optimization(R-BESO) method is
introduced as one of the topology optimization methods using an evolutionary algorithm and is applied to several opti­
mization problems. The method can get optimum topologies of the structures throughout fewer iterations comparing
with previous several methods based on ESO. R-BESO method is similar to BESO method except that elements are
generated near a candidate element according to the rank calculated by sensitivity analyses. The displacement sensitiv­
ity analysis was adopted by the nodal displacements of a candidate element in order to determine a rank on the free
edges for two dimensional model or the free surfaces for three dimensional model. In this paper, R-BESO method is
proposed as another useful design tool like the previous ESO and BESO method for the two bar frame problem, the
Michell type structure problem and the three dimension short cantilever beam problem, which had been used to verify
reasonability of ESO method family. For the three dimensions short cantilever beam problem an optimized topology
could be obtained with much fewer iterations with respect to the results of other ESO methods.

Keywords: Ranked bidirection evolutionary structure optimization(R-BESO); Performance index(Pf); Stress ratio(SR); Weight ra­
tio(WR); Candidate element

1. Introduction

Generally the structural optimization aims at
searching shapes or sizes of a structure under given

loads and boundary conditions with minimum weight
or minimum manufacturing cost while satisfying

some constraints such as stresses, displacements,
natural frequencies and buckling loads. In nature, the
cases optimizing one's body may be found in growth
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and evolution of many kinds of lives. For instance,
trees are growing up with gradually changing annual
rings and the shape of their stems is being modified to

get more sunshine and to make strongly support un­
der given envirorunent.

In designing structures, commercial FEA codes and
optimization codes are already known as one of the
useful tools. Although commercial optimization
codes are powerful, a lot of field engineers cannot use
them practically due to several efforts, for example
cost or time, in order to apply to their problems, still
now. And some engineers may have some troubles to
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use an optimization technique because the concept
may be too complex for all engineers to understand
easily and a lot of hours will be spent in applying to
some real problems. So, most of the field engineers
have searched for an available and easier optimization
method extending a commercial FEM code which is
used in a structure design presently.

The topology optimization is recently interesting
for many engineers, which searches the first phase in
structure design or an optimum connectivity of given
components. Although the concept of the topology
optimization proposed long time ago, the application
has not improved significantly due to numerical diffi­
culties. Size and shape optimization cannot search a
structural topology because an initial topology has
been maintained throughout an optimization proce­
dure. In a structural design, a topology of structure
should first be decided in order to satisfy various con­
straints such as load and boundary conditions. So the
topology optimization method is one of the useful
tools of the many structural designers who should
determine a prospective feature of a new product.

Evolutionary Structural Optimization(ESO) me­
thode1-8] has several benefits; its concept is not diffi­
cult to understand and it can be easily expanded using
commercial FE packages, respectively. The basic
concept of ESO is that some material having less
contribution degree to the given environments and
criteria is removed from an initially defined FE model.
For a stress problem, the materials involved in a
lower stress in comparison with stress level in other
regions are eliminated throughout evolutionary pro­
cedures, and so the contribution of finally remained
materials becomes more equal over all the materials.
In contrast to removing procedure, material addition
procedure from the least material structure was called
by added ESO(AESO). And Bidirectional ESO
(BESO) [6] method was developed, which included
both removal and additional procedures. BESO
method cannot only get an optimal design throughout
less iteration number with comparison with ESO but
also prevent reaching local optimums. Reduction of
iteration number means that the method may lead to
saving of a computational cost. The methods based on
ESO have been applied to various structure design
problems of some stress analysis and modal analysis
sides.

ESO method has been applied to elastic contact op­
timization problems using gap and beam elements [9].
The gap size of the gap elements was used as a design

variable, and an optimal profile for each junction was
eventually given. The computation in solving a con­
tact problem generally requires more cost with re­
spect to other linear problems because it is one of
typical nonlinear problems. Kim et al[lO] and Lee
[11] studied on the reliability based topology optimi­
zation and robust design optimization.

Generally an optimized model through topology
optimization procedures has non-smooth shapes and
then some procedures in which outlines of the model
are made continuous should be applied. Some re­
searchers [12] had studied on optimizing topologies
with other methods and generating CAM data in or­
der to manufacture a structure based on the optimum.

Generally stresses caused by given load conditions
may be reduced if a structure is made heavy. A heavy
structure, however, may violate several design con­
straints in some fields and need more cost with re­
spect to light one. Fully stressed structure means that
all materials composed of a structure are uniformly
contributed to several load conditions. So, local stress
concentration may disappear over the structure under
the given load conditions and the maximum stress can
bereduced.

In this paper, R-BESO method is proposed as one
of useful design tools in order to search an optimized
structure topology. It is developed and extended out
of BESO method using a sensitivity analysis for nodal
displacement of elements. While elements are con­
stantly generated on the existing element by criteria in
BESO, a group of elements are differently added in
accordance with calculated ranks by the sensitivity in
R-BESO. For instance, the most number of elements
are attached on the first rank side of which difference
between nodal displacements for the existing element
is the highest. Thus the number of structure analyses
can be reduced over the optimization procedures sig­
nificantly. And Performance Index(PI) defined by
Stress Ratio(SR) and Weight Ratio(WR) is used as
the objective function. We can get an optimum topol­
ogy for several problems at lower iteration number of
R-BESO comparing with that of BESO.

2. Performance index for fully stressed struc­
ture

A good structure in stress design side can be told
that all of the materials are in an equal stress state as
well as the weight is small. But stress concentration
phenomena cannot be avoided for a real structure. A
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lot of engineers are eager to find a topology with
lower stress concentration.

In this paper we want to get a topology of a fully
stressed and light structure. So, Performance In­
dex(pI) is defined using stress and weight factor as
the objective function in the optimization procedure.

I 1
(1)P/=-x-

SR WR

SR Jo-.,t (2)
(Jre!

N
(3)WR=-

Nref

PI consists of both a stress ratio and a weight ratio
for a current FE model. The stress ratio is defmed
using an average Mises stress of candidate elements
of each iteration and the reference stress which is an
allowable design stress. If the stress ratio is smaller
than 1, the present structure may be told that it is safe
under the considered conditions. The weight ratio
indicated the ratio between the number of elements
for a current model and the reference number. The
reference number is chosen with the number of all
elements for an initial model. So, the lightest structure
can be obtained with the smallest weight ratio. If a
considered structure is made of the same material, the
ratio between the numbers of elements for FE model
is the same meaning as the weight ratio for that.

Consequently, FE models among evolutionary
steps can be estimated by PI in order to choose an
effective light structure in which most materials may
contribute to supporting the given loads. With a
viewpoint of optimization, maximizing PI can lead to
minimizing stress owing to reducing the degree of
stress concentration and minimizing the weight of a
structure. Then we can obtain a fully stressed and
light structure.

procedure because a material is added on the only
outside of structure's border.

BESO is classified into additional procedure and
removal procedure and the volume history according
to an optimization procedure is shown in Fig. l.
These results are from Querin's papers[5, 6] about the
two bar frame and the Michell type structure, which
have been generally used to compare with other
methods of topology optimization. It is true that the
weight of FE model during the evolutionary steps is
constantly increased until 45 iteration steps and 61
iteration steps for each case. These amounts of the
steps are 66% and 96% of the total iteration step
number reaching an optimum. This says that if the
rate of the growth of a structure was higher, then the
total iteration number required to approach an optimal
topology could be very effective on reducing the cost.
In other words, if elements were fast generated
around the region involving high stress, the iteration
step number could be significantly shortened compar­
ing with that ofBESO.

Displacement sensitivity analysis was previously
introduced to BESO in order to increase the structure
volume in elements additional procedure. Only one
element is added on each :free edge of an element
chosen due to the sensitivity analysis. In this study,
however, several elements are generated on each free
edge corresponding to the ranks determined by the
sensitivity analysis. So, each free edge of a element
has a rank which is an order of difference between
nodal displacements. For instance, rankl is the big­
gest displacement difference of two nodes for two
dimensional model or four nodes for three dimen­
sional model.

1.2.x10~

20x10~

Fig. I. Volume evolution history for the two bar frame and
Michell type structure optimization problems using the SESO
method [6].
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3. Ranked bidirectional evolutionary optimi­
zation(R-BESO)

ESO method searches an optimum topology from
the maximum design domain throughout removing
less efficient materials within the full domain. Thus a
structure iri the previous step has been heavier than
the present one. On the other hand, AESO method is
known as the procedure adding some materials to the
minimum design domain around the region under
higher stress. The structure grows through AESO
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Table 1. Added element types corresponding to the rank onto
free edges or free surfaces of a candidate element.

As the same as other FE model of ESO family,
considered elements are a square shape for two di­
mensional model and a cubic shape for three dimen­
sional model. An element for two dimensional model
and three dimensional model have 4 and 8 nodes,
respectively. ai~D indicates the displacement sensi­
tivity for two dimensional model, and node i and j
should be the same plane parallel to X-Z or Y-Z plane.
a~D , the displacement sensitivity for three dimen­
sional model, is absolute value of the difference be­
tween the maximum displacement and the minimum
displacement of the 4 nodes which are posed onto the
same plane parallel to X-Y, Y-Z or X-Z plane. And
the rank is determined for each free edge of two di­
mensional model and for each free surface of three
dimensional model.

ai~D=iui-Ujl i,j={1, ... ,4}; i*j (4)

ai~D =I(uJm.x -(u)min! i,j={1, ... ,8}

where Xi = xj
(5)

or Yi =Yj

or Zi = Zj

2 Dimension

Candidate
Element

Rank I

Rank 2

Rank3

1 1
Maximize: f(x TJ) = PI = - x-

, SR WR
(6)

where RR and IR indicate rejection ratio and inclu­
sion ratio, respectively. They are ones of dominant
factors in evolving a structure from an initial model to
an optimum topology model. RR and IR are applied
to determining a lower limit stress (0"L) and an upper
limit stress (O"u) in evolutionary procedures, respec­
tively. If an element stress involved in the element
chosen of a present model is smaller than the lower
limit stress or larger than the upper limit stress, then
the element may be removed from a present model or
some elements may be added around that according

N

Subject to: 2:[Ku], - {F} = 0
j",l

(7)

(8)

(9)
where

where

71 = {O, 3,4,7} for 2 dimension

17 = {OJ,10,19} for 3 dimension

x = {O,I}

TJ(O"j -O"u)<':O

Table 1 denotes types of added elements corre­
sponding to each rank for a free edge or a free surface
for two or three dimensional model. For two dimen­
sional model, stacked three elements are added on the
free edge of rank 1 and four elements are created at
both sides of them. And, three elements are also gen­
erated on a free surface determined by rank 1 for
three dimensional model.

Actually, the number of added elements on a se­
lected free surface for three dimensional model is the
same as the number of added elements on a selected
free edge for two dimensional model. To make the
outline of the updated model smooth, several exira
elements are generated on the sides of the elements
added on free surface just like two dimension model.

Finally 7, 4 and 3 elements may be added to each
free edge of a candidate element for two dimensional
models, and 19, 10 and 1 element may be generated
on each free surface for three dimensional models
respectively. So, R-BESO can evolve a structure with
faster growth rate comparing with BESO.

The mathematical representation of R-BESO is as

follows
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to the rank onto free edges. It may be said that the
evolution is achieved throughout removal and addi­
tional procedure over all elements for a current model,
briefly.

The procedure ofR-BESO is summarized in Fig. 2
and composed of the fast evolution module and the
normal evolution module. Elements are added using
the previously decided rank and removed in the fast
evolution module. In normal evolution module, the
procedure deciding any ranks for free edges or free
surfaces is excluded out of the fast module as shown
in Fig. 3. The procedure that governs the R-BESO is
as follows.

Step 1 : The maximum design domain must be
specified, in which structure elements can be made
throughout the optimization procedure, and it is nec­
essary to defme the positions under some required
loads and boundary conditions.

Step 2 : The structure is meshed using square ele­
ments for a two dimensional model or cubic elements
for a three dimensional model.

Step 3 : The initial model is generated using the
elements connecting between loaded regions and
bounded regions. This may be said by the smallest
and simplest model which is satisfied with the con­
sidered condition and is made by removal of unse-

Shn't

OiStrete de!li~n domain rising FE Jdellb with rt-gullll" sl:te-deltment,

Select the least IlUmDtro( elements in tilt' me-sh tl) tonnttt support, t" load,

Ddete- remain elelHents uMelected in prcvioll:J step

Sdcd iCc!U5ioJ) ntti~)(lR}~ r~jet'tio:n ratio{RR) & evolution ratio(ER}

Cury Old finit~ de.ment anal)lsis rot'" a initiifl mQdd

Fig. 2. Main flow chart for the R-BESO algorithm.

lected elements from the design domain.
Step 4 : Choose IR(Inclusion Ratio), RR(Rejection

Ratio) and ER(Evolution Ratio) which are ones of
dominant factors of the optimization procedure.

Step 5 : Define some constraints
Step 6 : Carry out a finite element analysis for the

initial model and obtain structure stresses of all ele­
ments and nodal displacement.

Step 7 : Start the fast evolution module
Step 8 : Calculate maximum, minimum and aver­

age ofthe stresses.
Step 9 : Select the candidate elements having any

free edges or free surfaces.
Step 10 : Calculate the upper limit stress (Tv and

the lower limit stress (J'L'

Step 11 : The rank on a free edge or a free surface
of a candidate element is determined by nodal dis­
placement sensitivity analysis and elements is gener­
ated corresponding to the rank. The elements having
stresses lower than O'L are removed out of a present
model.

Step 12 : Conditions of an updated model obtained
after both the element addition process and the ele­
ment removal process, are examined using the evolu­
tion constraints defined previously. If they satisfy the

Fig. 3. Flow chart for the fast evolution module of the R­
BESO.
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constraints then go to next procedure. Otherwise IR
and RR are updated using ER(Evolution Ratio).

Step 13 : After finite element analysis for an
evolved model, calculate the performance index.

Step 14 : Steps from 8 to 13 are repeated until the
perfonnance index for an evolved model meets the
following convergence conditions.

where, MI, =PIC _ j -PI"" (i = 1,... ,4)
where, PI, denotes the performance index for a
present iteration model.

Step 15 : After the fast evolution module, start the
normal evolution module excluding the sensitivity
analysis procedure. So, elements are added onto all
free edges or all free surfaces of a candidate element
just corresponding to rank 3. To have higher accuracy
rather than that for the fast module, the convergence
criteria are changed as following.

IRnew = fRoid + ER

RR."" = RRow+ ER

IpI, -PI""I-(MI)"" <0
4

I,PI'_i
where, PI =l=.!.....­

"" 4
•
I,MIj

(t.PI)""=~

PIc - PI""< 0
6

'IPI'_l
where, PI = l=.!.....-

cv 6

(10)

(11)

(12)

(13)

the mesh density for the [mite element model. Indi­
vidual plate element size and mesh density are equal
to those used in the BESO study, The initial mini­
mum structural domain means the first FE model
from which evolutionary iterations are stated.

History for the objective function, PI, with process­
ing iteration number is shown in Fig. 5. In fast evolu­
tion procedure, PI is sharply increased with respect to
that in nonnal evolution procedure. PI is about 3.35 in
the first step, and is increasing with processing item
tion steps. It largely continues to be raised until reach-

1000 II~ ,-------------i=I=rI~ltl~--r- ..........
Individual Plate ,.",. '_..L ..j.....:

/ I! I

Element Size ('1-~
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1••• _,: ~

,,
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U
<Xl g
1 ~

~ --r
F

• Initial Minimum ,I Seructu rral Domain !

I :
I_":._":"~,,,,,_______:__J

Fig. 4. Design domain for the two bar frame problem (unit:
mm).

4. Results and discussion

To show some advantages ofR-BESO method. two
bar frame, Michel! type structure and three dimen­
sional short cantilever beam problems were used.
They have been used in many studies for a topology
optimization in order to be compared with other algo­
rithms..In this study, the results for those problems by
R-BESO method are compared with BESO results [6]
in order to show the characteristics ofR-BESO.

30

2,
::
] 20

t:
=
~ 15

i
;:. 10

,.,•.•.<•.•.•.~~•.•.•._ -=~-H··7···

/. IOptimum: .:;J

/
/

)
4.1 Two barframe problem

Fig. 4 indicates the dimensions for the two bar
frame problem with the maximum design domain and

10 1, 20 2, 30 35 40 45

Iterarlcn Number

Fig. 5. Evolutio history of performance index for the two bar
frame problem.
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ing the maximum value, about 30.44, at iteration
number 42. Deviations of PI in the normal evolution
procedure are smaller than those in the fast evolution
procedure. Iterations are fmished when a current
model satisfies the optimization conditions.

Optimal topologies through R-BESO and BESO
are shown in Fig 6, respectively. R-BESO searched
the optimum through 42 iterations,which was equiva­
lent to 45% of the required iterations for BESO. R­
BESO can be said a fantastic method in reducing
computational costs. Two results are roughly similar
to each other but the angle between two bars of
BESO's result is the larger than that of R-BESO's
result. This means that the distance between two sup­
porting positions of the model by R-BESO is smaller
than that by BESO. But the width of each bar of R­
BESO's result is not even and is wider than BESO,
Despite these differences between the two topologies,
those are as just a few differences as may be ignored
in many real situations because an optimized structure
may not be taken by only a topology optimization
tool. Particularly, it was known that saving costs and
reduction in required hours are the most important
issue in various industries. If described in a point of

(a) R-BESO(lteration number = 42)

(b) BESO(7] (Iteration number = 93)

Fig. 6, Optimal topologies for the two bar frame problem
using the R-BESO and the BESO method,

that side, R-BESO may be accepted in many kinds of
industries. And even if using the structure topology
obtained by R-BESO, some following processes, such
as shape and size optimization, may be made elimi­
nate the differences incurred in the previous process.

Table 2 represents stresses and the total number of
elements of obtained optimal topologies using each
method. BESO can be used in order to obtain the
lighter structure with 77% of the weight by R-BESO.
The average stress for the R-BESO's model is smaller
than that of the BESO's, but the maximum stress of
the R-BESO's is the larger. For R-BESO, both ofthe
difference between the maximum and minimum
stress and the number of the model's elements are the
larger than BESO's. And the ratio between the maxi­
mum stress and the average stress from R-BESO is
the higher than BESO's. Stating PI for each result,
which is defined in this paper, the value calculated
from BESO is larger than R-BESO. However, the
difference between them is 3.410 %, which may be
very small in common engineering senses. So, we
may briefly say that R-BESO's model is one of
closely optimized models for a fully stressed structure.

4.2 Michell type structure problem

The Michell type structure has been said that both
ends are under fixed boundary conditions and loads

Table 2, Comparison of optimal models for the two bar frame
obtained by the R-BESO and BESO.

Method um1l..X (T,v umin N PI
(Mpa) Mpa (Mpa)

R- 6,656 0,054

(",~, / o; ~ 2.83)
2.354

((T,~J"'w ~ 0,02) 196 30343
BESO

6.412 2.008 31.414

BESO
(",_/a~ <~.16)

2.971
(a,,;,,/a,w: O•68) 150 (Dilf,

3.410%)

Fig. 7..Design domain for the Michell type structure problem
(unit: mm).
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Fig. 8. Evolution history of performance index for the Mi­
chell type structure problem.

are applied at middle point of the span as shown in
Fig. 7. Maximum design domain, within which ele­
ments can be generated, has 1000 nun of the height.

Fig. 8 shows variations of PI in the evolution pro­
cedure for the Michell type structure using R-BESO.
PI is steeply increased in the fast evolution procedure
such as the trend of the two bar frame problem. The
fast procedure is from the first to 8 iteration steps and
PI is increased by 641% with respect to the initial
model in the procedure. Finally an optimum topology

is obtained at 22 step and totally calculated steps are
required 25 iterations. In normal evolution procedure
PI is increased with more stable than the fast proce­
dure as for the two bar frame problem. Optimal to­
pology of either R-BESO or BESO is shown in Fig. 9.
For R-BESO, the optimized model requires just 47%
computational costs in comparison with BESO. Re­
ducing the costs is the best merit ofR-BESO method.
But the model has a few differences from the BESO's
model.

In this case, the link of components is very similar
to each other, although there are the differences of the
width of each part and the height of the model from
the two models.

Table 3 says that stress and the number of elements
for the two topology optimized models. The number
of elements for R-BESO is 65% with respect to
BESO and then the lighter structure is obtained by R­
BESO. But, the average stress ofthe optimized model
for BESO has the smaller value. While the maximum
stress is the larger, the ratio of the maximum stress to
the average stress is the smaller for R-BESO.

This means that the contribution of material against
the given load condition is evenly divided into all
composed material, although the maximum stress is
the higher. In the other side PI for BESO, which con­
sists of both stress and weight factors, is the larger
than R-BESO. The difference between two methods
is calculated by 2.155%, which is smaller than the
previous example. So, it is known by the objective
function that the topology of RcBESO had nearly
approached a fully stressed structure.

4.3 Three dimensional short cantilever beam prob­
lem

2520

No:rmali:<:'"oiution

1510

Iteration Number

Fast Evl)lution

18

20

16

(a) R-BESO(lteration number=22)

(b) BESO[7](lteration number=47)

Fig. 9. Optimal topologies for the Michell type structure pro­
blem using the R-BESO and the BESO method.

Although many cases of real engineering problems
are in three dimensional state, simplified two dimen-

Table 3. Comparison of optimal models for the Michell type
structure obtained by the R-BESO and BESO.

Methoc G m"" Ga. Q"min
N PI

(Mpa) Mpa (Mpa)

R- 10.676 0.042

BESO (0'_,/0'"" =3.93)
2.719 (0'=10'", = 0.02) 326 18.953

8.591 0.184 19.370

BESO
(0'_10',., =5.0l)

1.714
(0'." law = 0.11) 506 (DHf.

2.155%)
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sional models are applied tor some problems in order

to reduce some computational costs with the given
accuracy limits. Other problems, which cannot be
simplified under the given constraints, need to carry
out a three dimensional analysis. A short cantilever
beam problem without considerations of width effects
is usually analyzed by means of a two dimensional
plain strain problem. But a short cantilever beam
having a narrow width may not be treated by a two
dimensional problem and bas to be analyzed using a
three dimensional model.

Fig. 10 shows the design domain about the three
dimensional short cantilever beam problem and iden­
tities load and boundary conditions. The width of the
beam is 40 rom smaller than the height. PI in the evo­
lutionary procedure is shown in Fig. 11 and an opti
mum topology is obtained at 12 iteration step. That is
corresponding to about 5% and 4% of the iteration
required for BESO and ESO, respectively. R-BESO
may dramatically reduce computation costs for the

Fig. 10 Design domain for the 3D short cantilever beam
problem (unit: mm).

same problem with respect to BESO and ESO. Con­

sidering that each step of the optimization procedure
usually requires a lot of computational costs, R-BESO
is much more effective for dimensional problems.
Most of the generations of material in a current model
are accomplished over the fast evolution procedure
and in the normal evolution procedure PI approaches

stable state.
Fig. 12 shows optimal topologies for R-BESO,

ESO and BESO. There are some differences between
ESO and BESO, and the iteration number spent by
BESO is around 71% of that for ESO. But these to­
pologies are largely similar to each other. The topol­
ogy by R-BESO is heavier in the width than that for

(a) R-BESO(lteration number=12)

.I f,ut EYGlutloR" 1 N'u.m"" F.vdvtitlll. •
(b) ESO(Iteralion number=317)

Fig. 11. Evolution history of performance index for the 3D
short cantilever beam problem.

~---·--7··""""'·-------------'.~
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1/ rOptimllm : 12 I
i

/
I

(c) BESO(lteration number ~ 226)

Fig. 12. Optimal topologies for the 3D short cantilever beam
problem using the R·BESO, ESO and BESO
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Table 4. Comparison of optimal models for the 3D cantilever
beam obtained by the R-BESO, ESO and BESO.

Method
a_ O":w 0'"min

N PI
(Mpa) (Mpa (Mpa)

R- 2.448 0.098

BESO (a~{O"",. ~3.52)
0.695

(ami,/O"= =0.14) 2671 19.306

3.134 0.359 19.183
ESO (0"_10'_ =2.74)

1.142
(O"m,,{O"= =0.31) 1636 (Diff.

0.644%)

3.015 0.260 19.171
BESO

(O"_IO'= =2.84)
1.061

(O"mi,lO'w =0.25) 1762 (Diff.

10.707%)

the others but it is similar to that of the other methods.
The data of the obtained results are summarized in

Table 4. The number of elements for R-BESO is cal­
culated by 163% of ESO and 152% of BESO. The
average stress for R-BESO is calculated by 61%,66%
for ESO and BESO, respectively. And PI for R­
BESO is the smallest among the considered methods
but the difference is smaller than 1%. Using the ob­
jective function, the most optimized topology could
not be selected among these topologies. So, a topol­
ogy optimization requires another consecutive proce­
dure such as either shape or size optimization meth­
ods.

5. Concluding remarks

BESO method is one of the improved tools using
ESO concept and has been told that the method is
more effective than a typical ESO. BESO consists of
the two procedures, adding and removing some mate­
rials. In BESO, the major portion of a structural evo­
lution is occupied by the generation procedure in
which elements are added to a previous model. For
instances, two bar frame and Michell type structure
problems spend more than half of the total computa­
tion costs to get an optimum.

R-BESO method had been developed in order to
reduce the computational costs spent in the generation
procedure. So, an optimum topology may be obtained
much more economically because the costs are
mainly used for the added procedure for BESO. In R­
BESO, a group of material is added based on the rank
determined by displacement sensitivity in evolution­
ary procedures. Added material groups are three types,
7, 4 and 3 elements for two dimension model and 19,
10 and I element for three dimension model.

To comparison with BESO, R-BESO was applied
to several problems which were the same problems as
those used in the BESO's study. For two dimension
problems such as two bar frame and Michell type
structure, R-BESO can search an optimum topology
throughout 46% or 47% iteration of BESO's results,
respectively. But the optimum topology obtained for
each problem has a few differences from BESO re­
sults. The BESO's topologies are more optimized
than those of R-BESO compared by the objective
function. However, the different value of the objec­
tive function is smaller than 5% and considering an­
other consecutive design process the differences may
not affect a final product. The reduction of computa­
tional costs for R-BESO is fantastic for a three di­
mension short cantilever problem. The rate of itera­
tion number required to reach an optimum topology
for R-BESO to that for BESO is 5%. And the value of
the objective function for R-BESO is a little lager
than that for BESO. Namely, R-BESO's topology is
the more optimized model than BESO's but the dif­
ference is very small.

In conclusion, R-BESO method may not approach
the exact optimized topology but can make us obtain
a closely optimized model which may has few differ­
ences for a final product. R-BESO can obtain an op­
timized topology throughout much smaller iterations
comparison with BESO. Particularly, the reduction in
the computational costs for three dimensional prob­
lems is dramatic so, it can be expected to be effi­
ciently used in many areas demanding faster results.
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